
Performance Coupling: A Methodology for Predicting

Application Performance using Kernel Performance

Jonathan Geisler and Valerie Taylor

Electrical and Computer Engineering

Northwestern University

2145 Sheridan Rd.

Evanston, IL 60208

fgeisler,taylorg@ece.nwu.edu

Abstract

Traditional performance optimization techniques have focused on �nding the kernel
in a program that is the most time consuming and attempting to optimize it. We
introduce a methodology for measuring and representing the interaction, or coupling,
between kernels that improves upon the accuracy of the traditional method. Then we
demonstrate the bene�ts of using the new methodology by developing a new hybrid
algorithm for the conjugate gradient application that results in fewer cache misses than
the other algorithms studied.

1 Introduction

Traditional performance optimization techniques have focused on �nding the kernel in a
program that is the most time consuming and attempting to optimize it. An example
of such an optimization entails restructuring an algorithm to increase data reuse (i.e.,
blocking [6]), thereby reducing cache misses. It is well known that the performance increase
that is achieved when optimizing a given kernel in isolation generally does not reect the
performance increase that occurs when the new kernel is included in the larger application
[11]. This disparity in performance increase between kernel and full application is due in
part to a lack of understanding of how the interaction, or coupling, of kernels a�ects the
performance of the application.

In this paper, we present a methodology for measuring this coupling and describe how
the measurements can be used to obtain an e�cient application. In particular, we measure
how kernels within an application perform in isolation and how di�erent kernels perform
with the other kernels in the application. The measurements lead to a parameter that is
a ratio between the kernels performance together and the separate performances of the
kernels summed. The parameter allows the algorithm designer to know how much a kernel
interacts with the other kernels in the application. With this ratio and a full understanding
of the algorithm, the designer can improve the application performance by changing the
kernel so that it can bene�t from the work done by previous kernels and/or doing work
from which future kernels can bene�t.

This work focuses on single processor performance. The methodology generalizes to
a parallel processing framework by adding another level of interaction to represent the
interconnection network. Future work will examine parallel applications more fully, but
we begin with serial applications because of the importance of obtaining optimized serial

1



2

codes. Within the single processor, we are looking at interaction that occurs within the
memory hierarchy; in particular the �rst level cache. With the increasing disparity between
CPU and memory performance, it is becoming increasingly important to optimize memory
hierarchy usage.

In Section 3, we describe the new methodology and how it is used. In Section 4,
we illustrate the methodology using a simple example followed by results obtained with
the conjugate gradient benchmark in Section 5. The original coupling results are used to
illustrate the development of a new data structure that reduces the total number of level
one cache misses slightly.

2 Related Work

In [7] and [8], Rafael Saavedra did much work characterizing various benchmarks by
decomposing them to high level Fortran-like statements. He then counted the number
of times each statement occurred in the program. By measuring the execution time of
each statement on various target machines, he was able to predict the total execution time
of the benchmarks by multiplying the statement execution times by the number of times
it occurred and then summing that product over all statements. Our work complements
Rafael's work in quantifying and understanding the interaction between kernels.

Signi�cant work has been done to develop models for parallel execution. Examples
of these are LogP [3], BSP [13], and CRAM [10]. While the models focus on the system
e�ects, with a major emphasis on interprocessor communication, the memory hierarchy is
not represented. Only the PMH model [1] parameterizes the processor memory hierarchy.
Interaction between kernels is not represented or considered, which is the focus of this
paper.

3 Proposed Methodology

3.1 Description

Our methodology focuses on extracting the performance coupling between pairs of kernels
(i and j) as a parameter cij . Performance coupling (cij) refers to the e�ect that kernel i
has on j in relation to running each kernel in isolation.

We can group the parameters into three categories:

� cij = 1 indicates no interaction between the two kernels, yielding no change in
performance.

� cij < 1 results from some resource(s) being shared between the kernels, producing a
performance gain.

� cij > 1 occurs when the kernels interfere with each other, resulting in a performance
loss.

Therefore, it should be the goal to use code that minimizes cij to achieve best performance.
To compute the parameter cij , three measurements must be taken:

1. pi is the performance of kernel i alone.

2. pj is the performance of kernel j alone, and

3. pij is the performance of kernels i and j together.



3

The above values can measure the usage of any resource that can improve the performance
of an application through sharing or reuse. Resources that might be measured are caches,
interconnection networks, and storage media. This work looks at the cache usage by
measuring misses at the various levels. Also, because cij represents the direct interaction
between two kernels, the only measurements needed for pij are those that correspond to
consecutive kernels that occur in the application; there is no need to calculate cij for all
pairs of kernels. Without any interaction between kernels, we expect pij to be the sum of pi
and pj . Since cij is the measurement of interaction between the kernels, we compute it as
the ratio of the actual performance of the kernels together to the no interaction expectation.
(i.e., cij =

pij
pi+pj

).

Given the values of pi, pj, and pij , we represent the performance of the full application
as a weighted, directed acyclic graph (DAG). To construct the graph, we create one node
for each kernel in the application and a directed edge from node i to node j if kernel i
immediately precedes kernel j in the application. Each node i is given the weight pi and
each edge from node i to node j is given the weight cij . By traversing the graph from
the initial kernel to the �nal kernel, we can approximate the performance of the entire
application. A naive approach would estimate total program performance by accumulating
the weight of the nodes along the path. Consideration of the coupling as well as the kernel
performance requires the following sum of products: p1 +

P
kernels
i=2 ci�1i � pi.

Evaluation of multiple algorithms for a given kernel entails including separate nodes
for each algorithm and measuring the necessary interactions. Then, identifying the best
algorithm for a given kernel requires determining the shortest path from the initial program
segment to the �nal segment. An example of such a DAG is in Figure 1 and will be described
further in Section 5.1.

3.2 Machine Description

For the experiments, we used the SGI Origin2000 at Northwestern University in the Center
for Parallel and Distributed Computing. It is an 8 processor cache coherent non-uniform
memory access machine with 1GB main memory; each processor is a 64 bit chip running at
195 MHz capable of 390 Mops (2 ops per cycle)[9]. Each processor has 64 oating point
registers and 64 integer registers. The machine has separate level one instruction and data
caches, but a uni�ed level two cache. The level one caches are 32KB each with two-way set
associativity. The instruction cache has a line size of 64 bytes, while the data cache line
size is smaller at 32 bytes. The 4MB level two cache is two-way set associative with a 128
byte line size.

The processors also have counters on chip that are able to count various events including
cache misses. Counting these events costs very little because the hardware generates an
interrupt after a certain value is reached in the counter (2053 for level one data cache). The
software that runs to satisfy the interrupt increments a count value stored in memory along
with the program location of the interrupt occurrence. This count value, when multiplied
by 2053 accurately represents the number of cache misses.

4 Illustration of Concepts

To illustrate the ideas behind the coupling parameter and to verify the model, we use
a synthetic program with two kernels that generate speci�ed data streams. For these
experiments, the kernels iterate through di�erent sized arrays with a stride of one.

It is very easy to predict the number of misses for the synthetic program. We know the



4

exact access patterns and the cache characteristics of the machine, which can be combined
to form a prediction: for arrays smaller than the cache, the number of misses is the number
of misses needed to pull the array into the cache, or array size

cache line size
, and for arrays larger

than the cache, each cache line must be refetched because it was ushed by another array
location, thus the total number of misses are num accesses

cache line size
.

To illustrate the predictability of the synthetic program, we ran a number of experiments
to measure the �rst level cache misses for the two di�erent options of the kernels with array
sizes of 4KB to 512KB. Each array element is four bytes. The results are given in Table 1
except for sizes less than 64KB that do not generate any data. The hardware counters
do not generate an interrupt until 2053 cache misses occur, and the predicted number of
misses for the array sizes smaller than 64KB is less than 2053.

Table 1

Level one cache misses

Size Predicted Measured Relative
Error

512KB 6553600 6555229 -0.00024850
256KB 3276800 3276588 0.00006470
128KB 1638400 1640347 -0.00118694
64KB 819200 817094 0.00257742

The predicted column is computed as described previously. The last column is the fraction
of relative error. By observing the �nal column, we can see that the synthetic program
performs as predicted.

After measuring each kernel in isolation, experiments were conducted to measure the
synthetic program with di�erent array sizes for each of the two kernels. The results, then,
led to the generation of the coupling parameter for each run. These experiments illustrate
what the coupling parameter represents through a series of three experiments. The �rst set
of experiments considers the kernels accessing arrays with the same starting address, but
di�erent sizes. The last two experiments demonstrate how the coupling parameter changes
when the starting address of the arrays are not the same.

Table 2 has the results for the �rst experiment for which the arrays have the same
starting address. Column one identi�es the array sizes used for each kernel. The second
column gives the cache misses for the �rst kernel, and the third column for the second
kernel. The two columns can be compared to the measured values in Table 1 to identify if
the cache misses increased (destructive coupling) or decreased (constructive coupling) when
the two kernels were executed together as compared to when the two kernels were executed
individually.

Table 2

overlapping arrays

Kernels Kernel 1 Kernel 2 Coupling
misses misses Parameter

4KB ) 128KB 57484 1582863 1.0
8KB ) 128KB 626165 1014182 1.0
16KB ) 128KB 427024 1211270 0.99874843
32KB ) 128KB 254572 1412464 1.00495049



5

In Table 2, the misses for kernel two (128KB) decreased in all cases as compared to
Table 1; however, the misses for kernel one increased in all cases. When run in isolation,
the �rst kernel is able to load the entire array into the cache and only incur misses for
the �rst time each element is read. When run with the second kernel, however, the �rst
kernel must reload the data into the cache because the second kernel ushes the cache every
iteration, causing destructive coupling. Conversely, when run in isolation, the second kernel
always had to reload the array into the cache. When run with the �rst kernel, however,
the second kernel can access the array that the �rst kernel has already loaded into the
cache causing a smaller number of misses, or constructive coupling. In this example, the
coupling parameter remains at 1.0 because the constructive coupling is exactly the same
as the destructive coupling, thereby o�setting each other. Hence, the coupling parameter
measures e�ective performance.

The second experiment explores the impact of moving the starting address of the array
in the �rst kernel such that the data left in the cache by the second kernel is immediately
accessed by the �rst kernel on the next iteration. We expect this alignment to produce
constructive coupling by reducing the number of misses by the �rst kernel.

Table 3

partially overlapping arrays

Kernels Kernel 1 Kernel 2 Coupling
Parameter

64KB ) 128KB 457819 1640347 0.85380116
128KB ) 128KB 1276966 1640347 0.88923654
256KB ) 128KB 2917313 1642400 0.92734864
512KB ) 128KB 6193901 1640347 0.95591182

In Table 3, the misses for kernel one decreased as compared to Table 1. When run in
isolation, kernel one was forced to reload its array into the cache each iteration because of
the larger array sizes. By reusing the data left by kernel two in the cache, kernel one does
not incur as many cache misses causing constructive coupling. Since there is no destructive
coupling to balance the constructive coupling, the coupling parameter is less than 1.0.
As the size of kernel one increases, however, the coupling parameter increases, since the
amount of reuse become a smaller percentage of the total number of accesses. This result
is signi�cant. We have not altered either kernel to change the number of cache misses when
run in isolation. The only reason for the decrease in cache misses in kernel one is due to
kernel two loading the data that kernel one needs. This coupling can only be measured
when they are run together{never separately.

The last experiment again looks at the impact of moving the starting address of the
array in the �rst kernel such that the data accessed by the two kernels do not overlap. This
\mis-alignment" can only cause destructive coupling by causing extra misses, since the two
kernels will never share resources.

In Table 4, the misses for kernel one increased as compared to Table 1. Both kernels are
forced to reload all of their data into the cache during each iteration causing destructive
coupling. This results in the coupling parameter being greater than 1.0. The coupling
increases as the size of kernel one increases since kernel one must reload more data as its
size increases.

The three experiments illustrate the concepts behind the value of the coupling
parameter using a synthetic benchmark. In particular, the experiments illustrate how



6

Table 4

non-overlapping arrays

Kernels Kernel 1 Kernel 2 Coupling
Parameter

4KB ) 128KB 53378 1636241 1.03003754
8KB ) 128KB 102650 1640347 1.06257822
16KB ) 128KB 203247 1642400 1.12515644
32KB ) 128KB 410600 1640347 1.23638613

the coupling parameter can change to be destructive or constructive without changing the
the isolated performance of the kernels. The use of the coupling parameter with a widely
used application is described below.

5 Experimental Results

5.1 Application Description

The conjugate gradient (CG) benchmark solves the equation Ax = b using an iterative
process to search through the solution space. The main computational complexity occurs
during the matrix-vector multiply section of the code. We divide the CG application into
three kernels:

1. Initialization sets up the data structures after randomly generating the nonzero
elements in the sparse matrix.

2. Matrix-Vector Multiply performs the largest piece of computation that can have
varying numbers of cache misses based on the data structure that stores the A matrix.

3. Remaining Vector Operations performs the rest of the computations needed to
perform the conjugate gradient application and then any cleanup after the application
is �nished.

The execution of the program performs the initialization kernel once and then iterates
through the other two. This results in possible couplings between 1 ) 2, and 2 , 3.

5.2 Level 1 Cache misses

We considered three di�erent sparse matrix representations (CMNS [4], SPAR [12], and
ITPACK [5]) in addition to the original representation [2] for the matrix-vector multiply
kernel. The results of measuring the isolated performance of each kernel and the coupling
parameters are given in Figure 1. Initial inspection of Figure 1 immediately rules out the
ITPACK representation because of its poor performance (42784520 misses vs. 12933900
misses), which is not compensated by a small enough coupling parameter. This leaves
CMNS, SPAR, and the original representation as possibilities. CMNS and SPAR have
destructive interaction with the remainder of the code (cij > 1:0), whereas the original
code has approximately no coupling with the remainder of the code (cij = 1:02). If
one considers cache misses only, which is the traditional method, one would select the
original representation or CMNS. Considering the coupling parameter, however, results
in the CMNS representation also being eliminated, and the original representation being
selected. In terms of level one cache misses, original has 22028 fewer misses than CMNS.



7

1.01

1.00

1.00

1.00

Original
matvec:

CMNS
matvec:

initialize remainder

SPAR
matvec:

ITPACK
matvec:

1.02

1.12

0.83

305897

12886681

12888734

42784520

13104299

1488425

1.11

Fig. 1. Conjugate gradient weighted directed acyclic graph

5.3 New Algorithm Development

Next, we studied the code carefully to understand why the various coupling parameters
existed1. In particular, we studied the code to identify why ITPACK had such a low
coupling parameter. The code for ITPACK is in Table 6 in the appendix. As can be seen
by the code, the ~w vector is strided through during each iteration of the outside loop. In
the CG code, however, the �rst vector used is the ~w vector. ITPACK and CMNS force
the ~w vector to be left in the cache causing fewer cache misses. The other data structures
only iterate through the ~w vector once (original) or in a non-strided manner (SPAR). The
problem with ITPACK, however, is that it accesses too many zero entries in the compressed
sparse matrix, causing a signi�cant number of misses.

Further examination of the conjugate gradient code reveals that the last vector used
before the matrix-vector multiply is the ~p vector. Both ITPACK and the original code
access ~p in a non-strided manner that bene�ts from having the ~p vector in the cache. In
contrast, CMNS and SPAR only iterate through the ~p vector once, only the �rst few accesses
of ~p will hit the cache before ~p is ushed by other accesses.

The aforementioned facts suggest the following characteristics for a hybrid code for
matrix-vector multiply:

1. The code should iterate through the ~w vector to keep ~w in cache for use by the
remainder of the code when the matrix-vector multiply �nishes (similar to ITPACK
and CMNS).

1For a full description of each data structure and the algorithm to compute with, see the appendix.



8

2. The code should iterate through the ~p vector frequently to take advantage of ~p being
left in the cache prior to the start of the matrix-vector multiply (similar to original
and ITPACK).

3. The data structure should not contain zero entries.

The above characteristics suggest a code for matrix-vector multiply such that the �rst
part uses ~p frequently (to take advantage of ~p being left in the cache by the remainder
of the code) and the latter part strides through ~w to leave ~w in the cache to be used by
the remainder of the code. This was achieved by splitting a matrix in half. The �rst N/2
columns of the matrix were stored row-wise, using the original data structure. The second
N/2 columns of the matrix were stored column-wise using CMNS. Hence the hybrid data
structure does not store any zero entries.

The new algorithm resulted in 12898999 misses for the matrix-vector multiply and a
coupling parameter of 1.0. The number of misses in in the range of original and CMNS,
but the coupling is better. The reduction in coupling for the new algorithm is enough such
that the new algorithm has 17451 fewer cache misses (0.995% less) than the original data
structure. While the reduction is only 1%, the example demonstrates how the methodology
is used in the development of a new data structure that had good performance.

6 Analysis and Summary

In this paper we presented a methodology for quantifying and understanding the interaction
between kernels. The interaction was represented as the coupling parameter, cij , which
measured the e�ective interaction between adjacent kernels in an application. We illustrated
the concepts behind the coupling parameter using a synthetic benchmark. This benchmark
demonstrated how coupling can be changed without a�ecting the isolated performance.

Further, we used the coupling parameter with the CG application. The CG example
illustrates two uses for the coupling parameter:

� The coupling parameter can be used to make performance directed By considering
the performance of a kernel as well as its coupling with other kernels, we are able to
determine which algorithm will have the best performance for a given kernel. The
coupling parameter illuminates how potential algorithms will interact with the overall
application.

� The coupling parameter can be used to help understand how kernels interact, for
which this understanding can lead to better hybrid algorithms. The phenomenon
was illustrated with the CG algorithm to provide slight improvement over existing
algorithms.

7 Future Work

Future work includes analyzing more applications and di�erent platforms. Further, we plan
to extend this work to parallel architectures.

References

[1] Bowen Alpern, Larry Carter, and Jeanne Ferrante. Modeling parallel computers as memory
hierarchies. In Conference on Programming Models for Massively Parallel Computers, 1993.



9

[2] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA, December
1995.

[3] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a realistic model of
parallel computation. In Proceedings of the Fourth ACM SIGPLAN Symposium on Practices

and Principles of Parallel Programming, pages 1{12, May 1993.
[4] A. George and J. Kiu. Computer Solution of Large Sparse Positive De�nite Systems. Prentice-

Hall, Englewood Cli�s, New Jersey, 1981.
[5] D.R. Kincaid, J.R. Respess, D.M. Young, and R.G. Grimes. Itpack 2c: A fortran package

for solving large sparse linear systems by adaptive accelerated iterative methods. ACM

Transactions on Mathematical Software, 8:302{322, 1982.
[6] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and

optimizations of blocked algorithms. In Proceedings of the Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 63{74, April
1991.

[7] Rafael H. Saavedra and Alan Jay Smith. Analysis of benchmark characteristics and benchmark
performance prediction. Technical Report CSD-92-715, University of California, Berkeley,
1992.

[8] Rafael H. Saavedra and Alan Jay Smith. Measuring cache and TLB performance and their
e�ect on benchmark run times. Technical Report CSD-93-767, University of California,
Berkeley, 1993.

[9] Subhash Saini and David Bailey. Hot chips for high performance computing. In SuperCom-

puting Tutorials, November 1996.
[10] Anand Sivasubramaniam, Umakishore Ramachandran, and H. Venkateswaran. Message-

passing: Computational model, programming paradigm, and experimental studies. Technical
Report GIT-CC-91/11, Georgia Institute of Technology, February 1991.

[11] Anand Sivasubramaniam, Umakishore Ramachandran, and H. Venkateswaran. A comparative
evaluation of techniques for studying parallel system performance. Technical Report GIT-CC-
94/38, Georgia Institute of Technology, September 1994.

[12] Valerie E. Taylor, Abhiram Ranade, and David G. Messerschmitt. SPAR: A new architecture
for large �nite element computations. IEEE Transactions on Computers, 44(4):531{545, April
1995.

[13] Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103{111, August 1990.

A Conjugate Gradient Algorithms and Representations

The following demonstrates the algorithms used in the conjugate gradient section along
with an example representation of the matrix:

K =

2
666664

k11 0 k13 0 0
0 k22 0 0 k25
k31 0 k33 0 k35
0 0 0 k44 0
0 k52 k53 0 k55

3
777775

A.1 CMNS

The Column-Major Nonzero Storage (CMNS) algorithm uses three one-dimensional
vectors. The nonzeros are stored in the vector ~KT

v .
~LT stores the size of each row, and ~RT

indicates the row for each corresponding element in ~KT
v . For example, matrixK is stored as:



10

~KT
v =

2
64k11; k31| {z }
column1

; k22; k52| {z }
column2

; k13; k33; k53| {z }
column3

; k44|{z}
column4

; k25; k35; k55| {z }
column5

3
75

~RT = [1; 3; 2; 5; 1; 3; 5; 4; 2; 3; 5]
~LT = [2; 2; 3; 1; 3]

Table 5

CMNS algorithm

index = 1

for column = 1 to N

repeat

w[R[index]] += Kv[index] * p[column]

index += 1

L[column] times

end for

A.2 ITPACK

The ITPACK algorithm uses two two-dimensional matrices. Each matrix has a width of
the row with the most nonzeros in the original matrix and height identical to the original
matrix. Each row of the original matrix is compacted in Kv with extra entries set to 0.0.
C stores the column for each corresponding value. For example, matrix K is stored as:

Kv =

2
666664

k11 k13 0:0
k22 k25 0:0
k31 k33 k35
k44 0:0 0:0
k52 k53 k55

3
777775
C =

2
666664

1 3 x

2 5 x

1 3 5
4 x x

2 3 5

3
777775

Table 6

ITPACK algorithm

for column = 1 to M

for index = 1 to N

w[index] += Kv[index][column] * p[C[index][column]]

end for

end for

A.3 SPAR

The SPAR algorithm uses two one-dimensional vectors. As in CMNS, ~KT
v contains the

columns of the original matrix, but the columns are separated by zeros. In the ~RT , the
values that correspond to the zeros are the column of the next set of data. For example,



11

matrix K is stored as:

~KT
v =

2
64k11; k31| {z }
column1

;0:0; k22; k52| {z }
column2

;0:0; k13; k33; k53| {z }
column3

;0:0; k44|{z}
column4

;0:0; k25; k35; k55| {z }
column5

3
75

~RT = [1; 3;2; 2; 5;3; 1; 3; 5; 4; 4;5; 2; 3; 5]

Table 7

SPAR algorithm

column = 1

for index = 1 to nz + N - 1

if (Kv[index] = 0.0) then

column = R[index]

else

w[R[index]] += Kv[index] * p[column]

end if

end for

A.4 Original

The original algorithm uses three one-dimensional vectors. The ~AT vector contains the
nonzeros stored rowwise. The ~LT vector contains indices into the startpoints of each row,
so ~L[i] indicates which element in A starts row i. Finally, ~CT indicates the column for the
corresponding entry in A. For example, matrix K is stored as:

~AT =

2
4k11; k13| {z }

row1

; k22; k25| {z }
row2

; k31; k33; k35| {z }
row3

; k44|{z}
row4

; k52; k53; k55| {z }
row5

3
5

~LT = [1; 3; 5; 8; 9]
~CT = [1; 3; 2; 5; 1; 3; 5; 4; 2; 3; 5]

Table 8

Original algorithm

for row = 1 to N

for index = L[row] to L[row + 1] - 1

w[row] += A[index] * p[C[index]]

end for

end for



12

A.5 Hybrid

We have split K so that the �rst two columns are stored row-wise and the last three are
stored column-wise. Matrix K is stored as:

~AT =

2
64
row1z}|{
k11 ;

row2z}|{
k22 ;

row3z}|{
k31 ;

row5z}|{
k52| {z }

rowwise

;

column3z }| {
k13; k33; k53;

column4z}|{
k44 ;

column5z }| {
k25; k35; k55| {z }

columnwise

3
75

~rL
T
= [1; 1; 1; 0; 1]

~CT = [1; 2; 1; 2]

~cL
T
= [3; 1; 3]

~RT = [1; 3; 5; 4; 2; 3; 5]

Table 9

New Hybird algorithm

index = 1

for row = 1 to N

repeat

w[row] += A[index] * p[C[index]]

index += 1

rL[row] times

end for

for column = N/2 to N

repeat

w[R[index]] += A[index] * p[column]

index += 1

cL[column] times

end for


